
Public

SECURITY AUDIT REPORT

for

WarpGate FUN

Prepared By: Xiaomi Huang

PeckShield
December 8, 2024

1/20 PeckShield Audit Report #: 2024-248

contact@peckshield.com

Public

Document Properties

Client WarpGate
Title Security Audit Report
Target WarpGate FUN
Version 1.0-rc2
Author Daisy Cao
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0-rc2 December 8, 2024 Daisy Cao Release Candidate #2
1.0-rc1 October 10, 2024 Daisy Cao Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2024-248

Public

Contents

1 Introduction 4
1.1 About WarpGate FUN . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Possible Pool Creation Failure in createPool() . 11
3.2 Revisited Function Visibility . 12
3.3 Lack of Coin Type Validation in mint() . 13
3.4 Suggested fee_address Validation in register_pool() 15
3.5 Lack of external Function for withdraw_fee . 16
3.6 Trust Issue of Admin Keys . 17

4 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2024-248

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
WarpGate FUN contract, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About WarpGate FUN

WarpGate FUN is a platform for people to launch tokens on Aptos. The contracts support users to create
and trade tokens instantly. Once the bonding process ends, liquidity will be added to liquidSwap by
the protocol admin. The basic information of audited contracts is as follows:

Table 1.1: Basic Information of WarpGate FUN

Item Description
Name WarpGate
Type Aptos

Language Move
Audit Method Whitebox

Latest Audit Report December 8, 2024

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/hatchy-fun/hatchy.fun-aptos-contract.git (1e017ed)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/hatchy-fun/hatchy.fun-aptos-contract.git (TBD)

4/20 PeckShield Audit Report #: 2024-248

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/20 PeckShield Audit Report #: 2024-248

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow

Kill-Switch Mechanism
Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2024-248

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2024-248

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2024-248

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Hatchy.fun implementations. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 4

Low 2

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/20 PeckShield Audit Report #: 2024-248

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 4 medium-severity
vulnerabilities, and 2 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Medium Possible Pool Creation Failure in cre-

atePool()
Business Logic TBD

PVE-002 Low Revisited Function Visibility Business Logic TBD
PVE-003 Medium Lack of Coin Type Validation in mint() Business Logic TBD
PVE-004 Low Suggested fee_address Validation in

register_pool()
Business Logic TBD

PVE-005 Medium Lack of external Function for with-
draw_fee

Business Logic TBD

PVE-006 Medium Trust Issue of Admin Keys Security Features TBD

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2024-248

Public

3 | Detailed Results

3.1 Possible Pool Creation Failure in createPool()

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: createPool()

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In WarpGate FUN, create_pool() function is used to register pool and add initial liquidity. During this
process, the consistency of the token type order must be ensured. In the process of examining the
related pool creation logic, we notice the token type order validation can be improved.

In the following, we show the code snippet of the related create_pool() and register_pool()

functions. In register_pool(), the token type order may be adjusted to specific order i.e., <AptosCoin
, CoinType> (line 85). However, the add_liquidity function does not perform any such adjustment.
It directly attempts to add liquidity using the token order <CoinType, AptosCoin> (line 39). This
mismatch can cause the entire create_pool operation to fail. Therefore, the consistency of the token
type order must be ensured.

32 public entry fun createPool <CoinType >(sender: &signer) acquires Config {
33 let sender_addr = signer :: address_of(sender);
34 assert!(exists <Config >(sender_addr), ERR_NO_CONFIG);
35 let config = borrow_global_mut <Config >(sender_addr);
36
37 // init(sender);
38 interface :: register_pool <CoinType , AptosCoin >(sender);
39 interface :: add_liquidity <CoinType , AptosCoin >(sender ,
40 config.total_supply , config.total_supply ,
41 0, 0
42);
43 }

Listing 3.1: create_pool()

11/20 PeckShield Audit Report #: 2024-248

Public

80 public fun register_pool <X, Y>(account: &signer) {
81 assert!(coin:: is_coin_initialized <X>(), ERR_NOT_COIN);
82 assert!(coin:: is_coin_initialized <Y>(), ERR_NOT_COIN);
83
84 create_state <X>(account);
85 if (is_order <X, Y>()) {
86 implements :: register_pool <X, Y>(account);
87 } else {
88 implements :: register_pool <Y, X>(account);
89 };
90 }

Listing 3.2: register_pool()

Recommendation The consistency of the token type order must be ensured in above mentioned
functions.

Status TBD

3.2 Revisited Function Visibility

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: set_state()

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In Hatchy.fun, set_state() function is used for changing the token reserve. By design, it is invoked
by other functions when the token reserve changed i.e. buy_token().

However, it comes to our attention that the function is permissionless and the visibility is public,
which means it can be invoked by anyone to set the token reserve. To elaborate, we show below the
related code snippet with the set_state() function (line 100).

100 public fun set_state <CoinType >() acquires PoolState , Config {
101 let coin_addr = coin_address <CoinType >();
102 let state = borrow_global_mut <PoolState <CoinType >>(coin_addr);
103 let config = borrow_global_mut <Config >(@PumpDeployer);
104
105 if (is_order <CoinType , AptosCoin >()) {
106 let (reserve_x , reserve_y) = implements :: get_reserves_size <CoinType ,

AptosCoin >();
107 reserve_x = reserve_x /* - config.liquidswap_token_value */;
108 reserve_y = reserve_y + config.virtual_apt_value;
109 state.reserve_x = reserve_x;

12/20 PeckShield Audit Report #: 2024-248

Public

110 state.reserve_y = reserve_y;
111 } else {
112 let (reserve_y , reserve_x) = implements :: get_reserves_size <AptosCoin ,

CoinType >();
113 reserve_x = reserve_x /* - config.liquidswap_token_value */;
114 reserve_y = reserve_y + config.virtual_apt_value;
115 state.reserve_x = reserve_x;
116 state.reserve_y = reserve_y;
117 };
118 }

Listing 3.3: set_state()

Recommendation Change the visibility of above-mentioned routine.

Status TBD

3.3 Lack of Coin Type Validation in mint()

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: mint()

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

As mentioned in Section 3.1, The consistency of the token type order in the pool must be ensured.
In the process of examining the related mint logic, we notice the implementation can be improved
to better validate the token type.

In the following, we show the code snippet of the related mint() routine. It assumes that the
token type of coin_y is Aptos, and add virtual_apt_value directly (line 190). Therefore, it may lead
to incorrect calculations.

180 public(friend) fun mint <X, Y>(
181 coin_x: Coin <X>,
182 coin_y: Coin <Y>,
183): Coin <LP <X, Y>> acquires LiquidityPool , Config {
184 let pool_address = pool_address ();
185 assert!(exists <LiquidityPool <X, Y>>(pool_address), ERR_POOL_DOES_NOT_EXIST);
186
187 let config = borrow_global_mut <Config >(@PumpDeployer);
188
189 let x_provided_val = coin::value <X>(& coin_x);
190 let y_provided_val = coin::value <Y>(& coin_y) + config.virtual_apt_value;
191

13/20 PeckShield Audit Report #: 2024-248

Public

192 let lp_coins_total = option :: extract (&mut coin::supply <LP<X, Y>>());
193 let provided_liq = if (0 == lp_coins_total) {
194 let initial_liq = math::sqrt(x_provided_val) * math::sqrt(y_provided_val);
195 assert!(initial_liq > MINIMAL_LIQUIDITY , ERR_LIQUID_NOT_ENOUGH);
196 initial_liq - MINIMAL_LIQUIDITY
197 } else {
198 let (reserve_x , reserve_y) = get_reserves_size <X, Y>();
199 let x_liq = (lp_coins_total as u128) * (x_provided_val as u128) / (reserve_x

as u128);
200 let y_liq = (lp_coins_total as u128) * (y_provided_val as u128) / (reserve_y

as u128);
201 if (x_liq < y_liq) {
202 assert!(x_liq < (U64_MAX as u128), ERR_UINT_OVERFLOW);
203 (x_liq as u64)
204 } else {
205 assert!(y_liq < (U64_MAX as u128), ERR_UINT_OVERFLOW);
206 (y_liq as u64)
207 }
208 };
209
210 let pool = borrow_global_mut <LiquidityPool <X, Y>>(pool_address);
211 coin::merge (&mut pool.coin_x , coin_x);
212 coin::merge (&mut pool.coin_y , coin_y);
213
214 // assert!(coin::value (&pool.coin_x) < MAX_POOL_VALUE , ERR_POOL_FULL);
215 assert!(coin::value (&pool.coin_y) < MAX_POOL_VALUE , ERR_POOL_FULL);
216
217 event:: added_event <X, Y>(pool_address , x_provided_val , y_provided_val ,

provided_liq);
218 update_oracle <X, Y>(pool_address , pool);
219
220 let lp_coins = coin::mint <LP <X, Y>>(provided_liq , &pool.lp_mint_cap);
221
222 lp_coins
223 }

Listing 3.4: mint()

Recommendation Validate the token type in mint() function.

Status TBD

14/20 PeckShield Audit Report #: 2024-248

Public

3.4 Suggested fee_address Validation in register_pool()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: register_pool()

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In the Aptos chain, there is a design principle that requires a user to proactively register to receive a
token before the user can receive the token. While reviewing the register_pool() related logic, we
notice the token register logic can be improved.

To elaborate, we show below the related code snippet of the register_pool() routine. The routine
attempts to register tokens X and Y for the fee_address using the fee_account (line 256). However,
since the fee_address and fee_account could belong to different entities, this registration may not
correct.

240 public(friend) fun register_pool <X, Y>(
241 account: &signer
242) acquires Config {
243 let pool_account = pool_account ();
244 let pool_address = signer :: address_of (& pool_account);
245 let fee_account = fee_account ();
246 let fee_address = beneficiary ();
247
248 assert!(!exists <LiquidityPool <X, Y>>(pool_address), ERR_POOL_EXISTS_FOR_PAIR);
249
250 let (lp_name , lp_symbol) = generate_lp_name_and_symbol <X, Y>();
251
252 let (lp_burn_cap , lp_freeze_cap , lp_mint_cap) =
253 coin::initialize <LP<X, Y>>(& pool_account , lp_name , lp_symbol , 8, true);
254 coin:: destroy_freeze_cap(lp_freeze_cap);
255
256 if (!coin:: is_account_registered <X>(fee_address)) {
257 coin::register <X>(& fee_account)
258 };
259
260 if (!coin:: is_account_registered <Y>(fee_address)) {
261 coin::register <Y>(& fee_account)
262 };
263
264 let pool = LiquidityPool <X, Y> {
265 coin_x: coin::zero <X>(),
266 coin_y: coin::zero <Y>(),
267 timestamp: 0,
268 x_cumulative: 0,

15/20 PeckShield Audit Report #: 2024-248

Public

269 y_cumulative: 0,
270 lp_mint_cap ,
271 lp_burn_cap ,
272 };
273 move_to (& pool_account , pool);
274
275 event:: created_event <X, Y>(pool_address , signer :: address_of(account));
276 }

Listing 3.5: register_pool()

Recommendation Validate the fee_address and fee_account are same entities.

Status TBD

3.5 Lack of external Function for withdraw_fee

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: withdraw_fee()

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In WarpGate FUN, the withdraw_fee() function is intended to withdraw the protocol’s fees, but its
visibility is set to friend, which means it can only be called by other functions within the same
module or from friend modules. However, there is currently no function that calls it.

To elaborate, we show below the related code snippet of the withdraw_fee() routine. It is in-
accessible to external entities that might need to trigger fee withdrawals (line 320). Therefore,
we recommend an entry function should be implemented that can call the withdraw_fee() routine,
providing external access while maintaining proper control over the fee withdrawal process.

320 public(friend) fun withdraw_fee <Coin >(
321 account: address
322) acquires Config {
323 let fee_account = fee_account ();
324 let fee_address = signer :: address_of (& fee_account);
325
326 let total = coin::balance <Coin >(fee_address);
327 coin::transfer <Coin >(& fee_account , account , total);
328
329 event:: withdrew_event <Coin >(pool_address (), total)
330 }

Listing 3.6: withdraw_fee()

16/20 PeckShield Audit Report #: 2024-248

Public

Recommendation Add an entry function for the withdraw_fee() while maintaining proper
control.

Status TBD

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple contracts

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In WarpGate FUN, there is a privileged account, i.e., @PumpDeployer. This account plays a critical role in
governing and regulating the system-wide operations (e.g., create configuration, add liquidity etc.).
Our analysis shows that this privileged account needs to be scrutinized. In the following, we use the
setParams() handler as an example and show the representative functions potentially affected by the
privileges of the @PumpDeployer account.

400 public entry fun setParams(sender: &signer , feeRecipient: address , feeBasisPoints:
u64 ,

401 comp_real_apt_amount: u64 , comp_fee_apt_amount: u64 , comp_self_apt_amount:
u64 ,

402 virtual_apt_value: u64 , liquidswap_token_value: u64 , total_supply: u64)
acquires Config {

403
404 let sender_addr = signer :: address_of(sender);
405 // check if sender is admin
406 assert!(sender_addr == @PumpDeployer , ERR_SENDER_NOT_ADMIN);
407
408 interface :: update_swap(sender , feeRecipient , feeBasisPoints , virtual_apt_value ,

liquidswap_token_value);
409
410 // update config
411 assert!(exists <Config >(sender_addr), ERR_NO_CONFIG);
412 let config = borrow_global_mut <Config >(sender_addr);
413 config.total_supply = total_supply;
414 config.liquidswap_tokens = liquidswap_token_value;
415 config.virtual_apt_value = virtual_apt_value;
416 config.comp_real_apt_amount = comp_real_apt_amount;
417 config.comp_fee_apt_amount = comp_fee_apt_amount;
418 config.comp_self_apt_amount = comp_self_apt_amount;
419 }

Listing 3.7: setParams()

17/20 PeckShield Audit Report #: 2024-248

Public

We understand the need of the privileged functions for proper WarpGate FUN operations, but at the
same time the extra power to the @PumpDeployer may also be a counter-party risk to the WarpGate FUN

contract users. Therefore, we list this concern as an issue here from the audit perspective and highly
recommend making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Make the list of extra privileges granted to WarpGate FUN explicit to WarpGate

FUN contract users.

Status TBD

18/20 PeckShield Audit Report #: 2024-248

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Hatchy.fun Aptos protocol,
which allows users to to launch tokens on Aptos. The contracts support users to create and trade
tokens instantly. Once the bonding process ends, liquidity will be added to liquidSwap by the protocol
admin. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

19/20 PeckShield Audit Report #: 2024-248

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2024-248

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About WarpGate FUN
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Pool Creation Failure in createPool()
	Revisited Function Visibility
	Lack of Coin Type Validation in mint()
	Suggested fee_address Validation in register_pool()
	Lack of external Function for withdraw_fee
	Trust Issue of Admin Keys

	Conclusion
	References

