
Public

SECURITY AUDIT REPORT

for

WarpGate DEX

Prepared By: Xiaomi Huang

PeckShield
February 7, 2025

1/18 PeckShield Audit Report #: 2024-293

contact@peckshield.com

Public

Document Properties

Client WarpGate
Title Security Audit Report
Target WarpGate DEX
Version 1.0
Author Daisy Cao
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 February 7, 2025 Daisy Cao Final Release
1.0-rc Decemeber 19, 2024 Daisy Cao Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2024-293

Public

Contents

1 Introduction 4
1.1 About WarpGate DEX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Suggested Use of Immutable References . 11
3.2 Revisited LP Token Symbol Name in create_pair() 12
3.3 Fee Mismatch Between Pair Creation and Swap Calculation 14
3.4 Trust Issue of Admin Keys . 16

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2024-293

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
WarpGate DEX protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About WarpGate DEX

WarpGate DEX is a decentralized exchange built on Aptos. It allows users to trade and swap Aptos

tokens. In the meantime, it also allows liquidity providers to create trading pairs and add liquidity in
a trustless manner. The basic information of audited contracts is as follows:

Table 1.1: Basic Information of WarpGate DEX

Item Description
Name WarpGate DEX
Type Aptos

Language Move
Audit Method Whitebox

Latest Audit Report February 7, 2025

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/hatchy-fun/warpgate-swap (d875480)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/warpgate-pro/warpgate-dex (b4b5630)

4/18 PeckShield Audit Report #: 2024-293

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/18 PeckShield Audit Report #: 2024-293

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow

Kill-Switch Mechanism
Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2024-293

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2024-293

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2024-293

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the WarpGate DEX implementations. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/18 PeckShield Audit Report #: 2024-293

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 3 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Low Suggested Use of Immutable References Business Logic Resolved
PVE-002 Low Revisited LP Token Symbol Name in cre-

ate_pair()
Business Logic Resolved

PVE-003 Low Fee Mismatch Between Pair Creation
and Swap Calculation

Business Logic Resolved

PVE-004 Medium Trust Issue of Admin Keys Security Features Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/18 PeckShield Audit Report #: 2024-293

Public

3 | Detailed Results

3.1 Suggested Use of Immutable References

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: swap.move

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In Aptos, borrow_global_mut is used to borrow a mutable reference for modifying the global resource.
While examining the WarpGate DEX protocol, we noticed that some functions use borrow_global_mut

for read-only purposes.
In the following, we show the code snippet of the related fee_to() function. This function only

needs to read the value of swap_info.fee_to and does not modify the SwapInfo resource (line 11).
Therefore, borrowing an immutable reference to the resource would be more appropriate.

10 public fun fee_to (): address acquires SwapInfo {
11 let swap_info = borrow_global_mut <SwapInfo >(RESOURCE_ACCOUNT);
12 swap_info.fee_to
13 }

Listing 3.1: fee_to()

Note the same issue is also applicable to the admin() routine.

Recommendation Replace borrow_global_mut with borrow_global in above-mentioned functions.

Status This issue has been resolved in the following commit: b4b5630.

11/18 PeckShield Audit Report #: 2024-293

https://github.com/warpgate-pro/warpgate-dex/commit/b4b5630

Public

3.2 Revisited LP Token Symbol Name in create_pair()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: swap.move

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In WarpGate DEX, the create_pair() function is designed to initialize the LP token by calling coin::

initialize with the generated name and other parameters, such as the symbol and decimal. While
examining the related initialization logic, we notice current implementation can be improved.

In the following, we show the code snippet of the related create_pair() function. Currently, the
LP symbol name is hardcoded as Cake-LP (line 54) during the initialization. However, this name is not
aligned with the protocol’s branding. Therefore, it would be more appropriate to update the name
to Warpgate-LP.

30 public(friend) fun create_pair <X, Y>(
31 sender: &signer ,
32) acquires SwapInfo {
33 assert!(!is_pair_created <X, Y>(), ERROR_ALREADY_INITIALIZED);
34
35 let sender_addr = signer :: address_of(sender);
36 let swap_info = borrow_global_mut <SwapInfo >(RESOURCE_ACCOUNT);
37 let resource_signer = account :: create_signer_with_capability (& swap_info.

signer_cap);
38
39 let lp_name: string :: String = string ::utf8(b"Warpgate -");
40 let name_x = coin::symbol <X>();
41 let name_y = coin::symbol <Y>();
42 string :: append (&mut lp_name , name_x);
43 string :: append_utf8 (&mut lp_name , b"-");
44 string :: append (&mut lp_name , name_y);
45 string :: append_utf8 (&mut lp_name , b"-LP");
46 if (string :: length (& lp_name) > MAX_COIN_NAME_LENGTH) {
47 lp_name = string ::utf8(b"Warpgate LPs");
48 };
49
50 // now we init the LP token
51 let (burn_cap , freeze_cap , mint_cap) = coin:: initialize <LPToken <X, Y>>(
52 &resource_signer ,
53 lp_name ,
54 string ::utf8(b"Cake -LP"),
55 8,
56 true
57);

12/18 PeckShield Audit Report #: 2024-293

Public

58
59 move_to <TokenPairReserve <X, Y>>(
60 &resource_signer ,
61 TokenPairReserve {
62 reserve_x: 0,
63 reserve_y: 0,
64 block_timestamp_last: 0
65 }
66);
67
68 move_to <TokenPairMetadata <X, Y>>(
69 &resource_signer ,
70 TokenPairMetadata {
71 creator: sender_addr ,
72 fee_amount: coin::zero <LPToken <X, Y>>(),
73 k_last: 0,
74 balance_x: coin::zero <X>(),
75 balance_y: coin::zero <Y>(),
76 mint_cap ,
77 burn_cap ,
78 freeze_cap ,
79 }
80);
81
82 move_to <PairEventHolder <X, Y>>(
83 &resource_signer ,
84 PairEventHolder {
85 add_liquidity: account :: new_event_handle <AddLiquidityEvent <X, Y>>(&

resource_signer),
86 remove_liquidity: account :: new_event_handle <RemoveLiquidityEvent <X, Y

>>(& resource_signer),
87 swap: account :: new_event_handle <SwapEvent <X, Y>>(& resource_signer)
88 }
89);
90
91 // pair created event
92 let token_x = type_info ::type_name <X>();
93 let token_y = type_info ::type_name <Y>();
94
95 event:: emit_event <PairCreatedEvent >(
96 &mut swap_info.pair_created ,
97 PairCreatedEvent {
98 user: sender_addr ,
99 token_x ,

100 token_y
101 }
102);

Listing 3.2: create_pair()

Recommendation Replace Cake-LP with Warpgate-LP in the above-mentioned function.

13/18 PeckShield Audit Report #: 2024-293

Public

Status This issue has been resolved in the following commit: b4b5630.

3.3 Fee Mismatch Between Pair Creation and Swap Calculation

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: swap.move

• Category: Business Logic [4]

• CWE subcategory: CWE-837 [2]

Description

In WarpGate DEX, each token pair in the project can define its own swap fee. The swap function
calculates the adjusted balances balance_x_adjusted and balance_y_adjusted to check whether the
pool invariant is maintained after the swap. While examining the swap related logic, we notice the
associated implementation can be improved.

In the following, we show the code snippet of the related swap() function. The swap fee should
be dynamic and depend on the specific token pair metadata. However, the current implementa-
tion applies a fixed swap fee during the calculation of balances balance_x_adjusted and balances

balance_y_adjusted (line 225 and line 226).

200 fun swap <X, Y>(
201 amount_x_out: u64 ,
202 amount_y_out: u64
203): (coin::Coin <X>, coin::Coin <Y>) acquires TokenPairReserve , TokenPairMetadata {
204 assert!(amount_x_out > 0 || amount_y_out > 0, ERROR_INSUFFICIENT_OUTPUT_AMOUNT);
205 let reserves = borrow_global_mut <TokenPairReserve <X, Y>>(RESOURCE_ACCOUNT);
206 assert!(amount_x_out < reserves.reserve_x && amount_y_out < reserves.reserve_y ,

ERROR_INSUFFICIENT_LIQUIDITY);
207 let metadata = borrow_global_mut <TokenPairMetadata <X, Y>>(RESOURCE_ACCOUNT);
208 let fee = metadata.swap_fee;
209 let coins_x_out = coin::zero <X>();
210 let coins_y_out = coin::zero <Y>();
211 if (amount_x_out > 0) coin::merge (&mut coins_x_out , extract_x(amount_x_out ,

metadata));
212 if (amount_y_out > 0) coin::merge (&mut coins_y_out , extract_y(amount_y_out ,

metadata));
213 let (balance_x , balance_y) = token_balances <X, Y>();
214
215 let amount_x_in = if (balance_x > reserves.reserve_x - amount_x_out) {
216 balance_x - (reserves.reserve_x - amount_x_out)
217 } else { 0 };
218 let amount_y_in = if (balance_y > reserves.reserve_y - amount_y_out) {
219 balance_y - (reserves.reserve_y - amount_y_out)
220 } else { 0 };
221 assert!(amount_x_in > 0 || amount_y_in > 0, ERROR_INSUFFICIENT_INPUT_AMOUNT);

14/18 PeckShield Audit Report #: 2024-293

https://github.com/warpgate-pro/warpgate-dex/commit/b4b5630

Public

222
223 let prec = (PRECISION as u128);
224
225 let balance_x_adjusted = (balance_x as u128) * prec - (amount_x_in as u128) * 25

u128;
226 let balance_y_adjusted = (balance_y as u128) * prec - (amount_y_in as u128) * 25

u128;
227
228 let reserve_x_adjusted = (reserves.reserve_x as u128) * prec;
229 let reserve_y_adjusted = (reserves.reserve_y as u128) * prec;
230 // No need to use u256 when balance_x_adjusted * balance_y_adjusted and

reserve_x_adjusted * reserve_y_adjusted are less than MAX_U128.
231 let compare_result = if(balance_x_adjusted > 0 && reserve_x_adjusted > 0 &&

MAX_U128 / balance_x_adjusted > balance_y_adjusted && MAX_U128 /
reserve_x_adjusted > reserve_y_adjusted){

232 balance_x_adjusted * balance_y_adjusted >= reserve_x_adjusted *
reserve_y_adjusted

233 }else{
234 let p: u256 = (balance_x_adjusted as u256) * (balance_y_adjusted as u256);
235 let k: u256 = (reserve_x_adjusted as u256) * (reserve_y_adjusted as u256);
236 p >= k
237 };....}

Listing 3.3: swap()

Recommendation Ensures that the correct fees are applied based on the specific configuration
of each token pair.

Status This issue has been resolved in the following commit: b4b5630.

15/18 PeckShield Audit Report #: 2024-293

https://github.com/warpgate-pro/warpgate-dex/commit/b4b5630

Public

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple contracts

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In WarpGate DEX, there is a privileged account, i.e., admin. This account plays a critical role in
governing and regulating the system-wide operations (e.g., set fee_to, update contract etc.). Our
analysis shows that this privileged account needs to be scrutinized. In the following, we use the
upgrade_swap() function as an example and show the representative functions potentially affected by
the privileges of the admin account.

300 public entry fun upgrade_swap(sender: &signer , metadata_serialized: vector <u8 >, code
: vector <vector <u8 >>) acquires SwapInfo {

301 let sender_addr = signer :: address_of(sender);
302 let swap_info = borrow_global <SwapInfo >(RESOURCE_ACCOUNT);
303 assert!(sender_addr == swap_info.admin , ERROR_NOT_ADMIN);
304 let resource_signer = account :: create_signer_with_capability (& swap_info.

signer_cap);
305 code:: publish_package_txn (& resource_signer , metadata_serialized , code);
306 }

Listing 3.4: upgrade_swap()

We understand the need of the privileged functions for proper WarpGate DEX operations, but at
the same time the extra power to the admin may also be a counter-party risk to the WarpGate DEX

contract users. Therefore, we list this concern as an issue here from the audit perspective and highly
recommend making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Make the list of extra privileges granted to WarpGate DEX explicit to WarpGate

DEX contract users.

Status This issue has been confirmed.

16/18 PeckShield Audit Report #: 2024-293

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the WarpGate DEX protocol, is a
decentralized exchange built on Aptos. It allows users to trade and swap Aptos tokens. In the
meantime, it also allows liquidity providers to create trading pairs and add liquidity in a trustless
manner. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

17/18 PeckShield Audit Report #: 2024-293

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2024-293

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About WarpGate DEX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Use of Immutable References
	Revisited LP Token Symbol Name in create_pair()
	Fee Mismatch Between Pair Creation and Swap Calculation
	Trust Issue of Admin Keys

	Conclusion
	References

